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RESUMO
Este trabalho aborda a modelagem e simulação de Sistemas Flexı́veis de Manufatura

(FMS) para otimizar a produção na Indústria 4.0. A pesquisa integra agentes inteligentes e apren-
dizado por reforço para aprimorar eficiência e flexibilidade na tomada de decisão de unidades
autônomas. Propõe um framework multicritério que equilibra lucro, sustentabilidade e variabili-
dade, permitindo adaptação em tempo real. O ambiente multiagente facilita a comunicação entre
unidades, redistribuindo tarefas para reduzir rejeições e aumentar a produtividade. A validação
ocorreu por meio de simulações em redes com seis unidades fabris, cada uma monitorada por um
agente que decide aceitar demandas conforme sua polı́tica, recursos e métricas de desempenho.
Os resultados mostram que o modelo atinge os objetivos e equilibra critérios econômicos, de sus-
tentabilidade e de customização.

PALAVRAS CHAVE. Sistemas de Manufatura Flexı́vel; Sistemas Multiagentes; Aprendizado
por Reforço.

ABSTRACT
This work addresses the modeling and simulation of Flexible Manufacturing Systems

(FMS) to optimize industrial production in Industry 4.0. The research integrates intelligent agents
and reinforcement learning to improve efficiency and flexibility in decision-making in autonomous
units. It proposes a multi-criteria framework that balances profit, sustainability, and variability,
allowing real-time adaptation. The multi-agent environment facilitates unit communication, redis-
tributing tasks to reduce rejects and increase productivity. The validation was carried out by com-
putational simulations of a small manufacturing network comprising six manufacturing units. Each
unit has a dedicated agent to decide the demand acceptance according to its policy, resource, and
performance measurements. The simulation results have shown that the decision model can pursue
the target and equilibrate the economic, sustainability, and customization criteria. The study high-
lights the potential of autonomous and connected manufacturing networks to optimize industrial
processes, promoting sustainability and competitiveness in Industry 4.0.

KEYWORDS. Flexible Manufacturing; Multi-agent Systems; Reinforcement Learning.



1. Introduction
Self-Organizing Manufacturing Networks (SOMN) are production systems that combine

the Internet of Things (IoT) and artificial intelligence to operate autonomously and adaptively. In
these systems, machines, devices, and software connect dynamically, possessing the ability to self-
configure, self-optimize, and self-heal [Lu et al., 2021]. SOMN represents a shift from centralized
manufacturing paradigms toward more dynamic and adaptive production environments, capable of
producing more sustainable and customer-tailored products.

In this context, approaches based on multi-agent systems and reinforcement learning have
proven promising, as evidenced in the works of [Zhang et al., 2022], which propose distributed
architectures for intelligent decision-making in dynamic environments. Additionally, studies by
[Wang et al., 2021] explore simulation and real-time scheduling using optimization techniques
combined with learning, highlighting the feasibility of hybrid solutions for complex production
environments. [Ferreira et al., 2023] introduces an initial framework for self-optimizing manufac-
turing networks using RL, a conceptual basis expanded in this work for a multi-agent environment.

The use of modern reinforcement learning algorithms, such as Proximal Policy Optimiza-
tion (PPO), proposed by [Schulman et al., 2017a], has stood out for its stability and efficiency, being
widely adopted in industrial scenarios, as seen in the studies of [Zhou et al., 2021]. To contextualize
our use of RLlib/PPO, [Li et al., 2023] provides a comprehensive review of Deep Reinforcement
Learning in smart manufacturing. Furthermore, [Popper et al., 2023] applies PPO in a multi-agent
context for dynamic production facility planning, balancing economic and sustainability variables.
This work incorporates such advances through the RLlib library [Liang et al., 2018] and the Petting-
Zoo framework [Williams et al., 2021], offering a robust structure for distributed simulation with
multiple agents. Additionally, multi-criteria aspects such as sustainability and customization have
been discussed in recent studies, such as [Zhang and Gao, 2020] and [Váncza et al., 2019], pointing
to the need for models that reconcile economic and socio-environmental objectives.

The proposal presented in this paper explores integrating an environment with multi-
ple agents, which is adaptive to uncertainty that may occur in industrial scenarios and capable
of handling distinct priorities (economic, sustainability, variability), promoting an adaptive global
real-time balancing. The Economic Criterion focuses on maximizing profit or minimizing cost,
considering factors like production efficiency, resource utilization, and operational expenses. Sus-
tainability seeks to reduce environmental impact by minimizing energy consumption, emissions,
and waste, promoting long-term ecological balance. Personalization or variability (local customer
service) criterion involves adapting products or services to meet individual customer preferences or
specifications, enhancing satisfaction and market competitiveness [Abualigah et al., 2023; Dennison
et al., 2024; Cheng et al., 2023]. This work extends the manufacturing environment model initially
proposed in [Ferreira et al., 2023], which considers a single peripheral unit. Considering dynamic
processing priorities and capacities, we propose a multi-agent extension to reinsert demands into
the networked system (multi-unit), minimizing the number of demand rejections.

This paper is organized as follows: Section 2 presents the framework of the environment,
Section 3 includes the modeling and evaluation functions of the environment. Section 4 discusses
the computational results, and Section 5 highlights the main findings and future research.
2. SOMN background

This section describes the Self-Optimised Manufacturing Network (SOMN) foundations,
including the environment simulator, single decision-making agent modelling, the system’s state
variables, and the reinforcement learning techniques employed in this work [Ferreira et al., 2023;
Lu et al., 2021; Kim et al., 2020].

We assume an environment composed of autonomous manufacturing units negotiating raw
material quantities and lead times to meet the forecasted demand for customized products. Each unit



contributes with its productive activity to the global multi-criteria objective involving costs, profit,
and sustainability indicators. Concerns with variability are introduced through the aggregation of
specific and regional characteristics to the structural ones.

2.1. Environment Variables
Stock balance BA, for M global and local raw materials stored at the local unit used

to feature each demand. The stock balance introduces uncertainty and delays to production. The
inventory includes not only the raw materials physically present but also those that are incoming
IN (already ordered but not received) and those already allocated to production OU . Availability
AV is calculated as:

AV = BA+ IN −OU (1)

Product requests (demands d) are received at specific time intervals and grouped by cus-
tomer. The date/time records are the date of input DId and delivery deadline (date of output - DOd),
which must encompass the expected delivery lead time LTd. Each request set d has an expected
cost COd, space demanded if held temporarily in the yard SPd, net profit per unit PRd, and an
eventual penalty PEd for accepting but failing to deliver the request.

Variables STd and FTd refer to each demand’s request status and resource matrix. The
cost COd, the space SPd proportionally depends on COd = AMd ·FTd ·EU , where overline vari-
ables ∗ represent an array M−dimensional, where M is the maximum number of raw material or
features in the system and EU is expected unit price of each raw material. Other demand attributes
are calculated using specific functions as shown in Equations 2 to 4.

LTd = τ(AMd · FTd) (2)

V Ad = ν(FTd) (3)

SUd = σ(FT−1
d ) (4)

where functions τ , ν and σ represents abstractions over criteria calculations and AM, VA, SU repre-
sents amount, variability, sustainability respectively. A demand batch may assume different statuses
STd throughout the production process, ranging from waste (-1), received (0), ready (1), rejected
(2), produced (3), stored (4), to delivered (5) [Ferreira et al., 2023].

2.2. Reinforcement learning-based agents
Reinforcement learning algorithms can be categorized into on-policy and off-policy. On-

policy methods directly optimize the current policy, resulting in significant stability but requiring
more data samples. In dynamic environments, on-policy is preferable, while in scenarios with
limited data collection, off-policy is advantageous. Both methods aim to optimize the agent’s policy
to maximize the accumulated reward, using interactions with the environment to collect data and
improve decisions [Schulman et al., 2017b].

RL policy-gradient methods are both Proximal Policy Optimization (PPO) and Recurrent
Proximal Policy Optimization (Recurrent PPO). The key difference is that Recurrent PPO incorpo-
rates Long Short-Term Memory (LSTM) networks to leverage information from past states. In this
work, the Recurrent Proximal Policy Optimization (Recurrent PPO) is employed, not relying on an
explicit model of the environment but learn directly from interactions with the environment. Recur-
rent PPO has recently enabled agents to use memory in partially observable environments [Pleines
et al., 2022].



3. Proposal
This section outlines the proposed architecture for decision-making in a flexible multi-

agent manufacturing environment. It introduces unit-specific service criteria, new communication
mechanisms, updated demand statuses, and strategies for handling rejected demands through inter-
agent transfers.

3.1. Intelligent Multi-Agent Manufacturing Network
The flowchart in Figure 1 shows a self-optimised production system where agents spread

throughout the network prioritize and route demands through three specialized manufacturing units.

Figure 1: Flowchart of a 3-unit self-optimised production system, including the priority engine,
decision-making agent, production, and delivery processes.

The three priority criteria, profit, sustainability, and variability, are used to classify the ar-
riving demands in Profit-Driven, Eco-Certified, and Custom-Made. Each demand is then driven
to a specific queue from which it is taken to start processing. The decision-making agents manage
the dynamic routing logic, prioritizing the demand according to the unit profile or global three-
criteria balancing. Agents evaluate both queue states and demand attributes, and high-score orders
bypass lower ones unless the risk of delivery failure is exceeded. The whole system is self-optimized
because all the flows are decided dynamically depending on the system performance under uncer-
tainty about raw material availability, plant workload, and delays. A three-tier fallback system
establishes cascading Fail-Safes, and final rejections occur only when the expected lead time is
greater than the due time in all queues or there is no time remaining for forwarding to another unit.

Sustainable outcomes result from eco-prioritized orders and energy and resource savings
due to rejection of those demands with a high risk of delivery failure. More traditional systems use
storage yards extensively to keep products that have not been delivered. Besides, custom jobs route
to specialized equipment first, and profit-critical demands maintain the Service Level Agreement
(SLA) compliance.



The system dynamically balances economic, environmental, and customer-experience
KPIs through distributed decision-making, with each agent applying local rules that collectively
optimize global performance. Rejection patterns feed back into demand forecasting models for
continuous improvement.

3.2. Procedure and Decision Rules
The manufacturing unit’s local process can be isolated from the rest of the production

network by considering specific interactions with local customers and suppliers. Thus, the decision-
making process can be considerably simplified into a sequence of decisions to proceed with or
interrupt the production stages of manufactured goods, depending on the risk of profit or loss under
prevailing circumstances and uncertainties.

The decision policy for the priority queue is represented by hyperparameters associated
with different classification criteria that can be applied depending on operational circumstances.
Various rankings allow the system to be evaluated and used to achieve different objectives. Below,
we define indices that offer different perspectives on the variables observed in the environment
(Equations 5, 6, and 7). The values are normalized between 0 and 1, where values closer to 0
indicate higher priority for a given demand in the unit where it is being processed.

h1,d =
1

AMd · PR
(5)

h2,d = 1− V Ad (6)

h3,d = 1− SUd (7)

The index h1 is calculated for each demand d, considering the cost-to-profit ratio. Note
that profit is net, as all production costs have been deducted. Index h2 is an inverse proportion re-
lated to the variability of features (resource matrix) of a given order (or demand), where variability
is a subjective concept calculated by summing the included feature vector (the more features, the
greater the variability). Index h3 applies the same logic to the estimated sustainability of a spe-
cific demand. The sustainability function is flexible enough to include aspects such as sustainable
suppliers or carbon footprint, among other factors.

Figure 2 shows the state sequence for each received demand. Circles illustrate procedures
and corresponding state values, while arrows connect states based on specific conditions. The lines
drawn connect the final states, where a reward or penalty may be applied to the resulting demand.

The Order&Receive and Released procedures are part of the negotiation process with
suppliers to obtain the raw materials needed to meet demand. These demands may be prioritized
based on profitability and available resources, considering production risks such as supplier avail-
ability, machine reliability, and potential contractual penalties. Upon receiving a new demand, the
Order&Receive procedure checks if it is already present in the yard by comparing it with others
using a ”mask” that identifies the machines it has passed through. If a match is found with another
existing demand, it is considered fulfilled and moves directly to the delivered state without going
through planning and production.

When a demand is produced beyond the stipulated time, it is given the stored (Store)
status and transferred to the yard. If the yard capacity is complete, the demand must be discarded,
the most severe penalty, calculated according to Equation 12. The Reject Local procedure refers to
the rejection of the demand by the unit and checks whether all other units have already rejected it.
If so, the demand is rejected. Otherwise, a new destination is determined using the function defined
in Equation 8 and illustrated in Figure 3.



Figure 2: State space, including 4 operational states: received (Order-Receive-Released), production
planning (Plan), locally rejected (Reject Local), produced (Produce), and 3 final states: rejected (Reject),

stored (Store), and delivered (Dispatch)

Figure 3: Each circle represents a peripheral unit in the system, and each color denotes its priority: yellow
for profit, green for sustainability, and blue for variability

The New Destination procedure, illustrated in Figure 3, involves selecting a new periph-
eral unit to which a rejected demand is reallocated. This redirection of demand d uses Equations
5, 6, and 7. Based on these values, the system determines which priority queue best matches the
demand, whether it aligns more with profit, sustainability, or variability, and reallocates it accord-
ingly.

New Target(A,D) =

argmin
i∈A

(Queuei) if Pd = max(h1,d, h2,d, h3,d) and STd = −1

−1 if no unit meets the conditions
(8)

where A represents the manufacturing units in the system, Pd the normalized value of a demand’s
attributes, and STd its status.

In this study, risk was evaluated solely based on time constraints. The decision to proceed
with production depends on whether the demand is within its delivery deadline. If the delay risk is
acceptable, the demand is scheduled for production. The final states are Dispatch when delivery is



successful, and Store when it is not.

3.3. Multicriteria Evaluation
There are several ways to design the objective function using a multicriteria approach.

In a global context, it is desirable to balance the behavior of the entire manufacturing network
by steering each decision toward favoring profit, variability, or sustainability criteria. In a local
context, the goal may be more specific to fulfill regional requirements, such as legal regulations,
local customer service, and eco-friendly suppliers. It is important to note that these objectives may
conflict, as the manufacturing unit will likely incur additional costs to align its actions with local
communities.

Therefore, we designed a prototype for the multicriteria objective function initially consid-
ering: profit, sustainability, and variability, all defined within the interval [0, 1]. The binary decision
variable xd represents the demand that is accepted, scheduled and delivered to the customer hub.
The objective function is a normalized composition of three objectives:

max
∑
d∈N

(PRd · xd + SUd · xd + V Ad · xd) (9)

Concerning the flow shop constraints, the objective is subject to:

Cd≤d + LTd · xd ≤ DOd · xd for d ∈ N (10)

where Cd≤d is the production time for all demands d before d and converges to the global makespan,
C(max), after the last demand produced, excluding those that violate the time constraint repre-
sented by Equation 10.

The reward function is associated with a specific demand d reaching one of the success
states: stored or delivered. The stored recovery refers to a demand that was successfully produced
but missed the delivery deadline. The product is kept in stock and may still be used for a future
order if matched. Note that storage yards are restricted, as in networked manufacturing models,
energy waste and plants configured with large storage areas should be avoided.

One of the main challenges in customized production systems is reconciling specific de-
mands with available stock, given the limited storage space. Accepting urgent orders can increase
risks and should be avoided. Excess stock should only be used as a last resort and not encouraged as
a standard practice. When space is available, storage should not generate a reward; a penalty should
apply when it is not. Meanwhile, the delivery of customized products should be rewarded based on
the nominal profit of the batch.

The reward RW of a specific unit is calculated according to its priority, defined by Equa-
tion 11, where penalties from poor decisions are not to be overlooked, as described in Equation
12.

RWd =


RWpr = AM · PR if the unit prioritizes profit
RWva = AM · PR · V A if the unit prioritizes variability
RWsu = AM · PR · SU if the unit prioritizes sustainability

(11)

The penalty is considered when a demand is sent to production but not delivered on time.
A demand that is delayed and stored in the yard is penalized geometrically by the current storage
consumption SPd of the yard |Y ARD| (reaching zero in a nearly full yard). Equation 12 also
considers the environmental tax ET, representing a penalty for yard use or waste status demands,
which are regarded as violations of sustainability.



PEd =


RWd≤d

|Y ARD|−SP ·xd+1
· ET if demand d has status :stored

−RW · ET if demand d has waste status
0 if demand d has any other status

(12)

Equation 11 models the reward for a given episode. For a queue of demands processed
before the current d (d ≤ d), the updated reward for d+ 1 may be added by a factor proportional to
the nominal profit PRd ·AMd, in the case of delivery, or be penalized according to Equation 12.

RWd+1 =

{
RWd if demand d has status :rejected
RWd≤d − PEd≤d if demand d has any other status

(13)

The rejection of a production order is treated in this work as an operational decision based
on the risk of failed delivery and is therefore not subject to penalties. The order is redirected to
another unit in the manufacturing network scenario, following the decision policy described in
Equation 8.

4. Computational Results
The experiments aim to validate a framework that integrates a multi-agent reinforcement

learning (RL) interface with a manufacturing unit simulator. This simulator interacts with external
sources to model suppliers and consumers, receiving orders with raw material specifications and
deadlines. Each manufacturing unit decides whether it accepts a demand in the lineup and, if not,
the demand is forwarded to another unit more suitable to accept it, considering the multi-criteria
objective. The framework was implemented1 with Python, leveraging RLlib 2.9.2 [Liang et al.,
2018], PettingZoo 1.24.2 [Williams et al., 2021], Wandb 0.16.1 [Biewald, 2020], and Ray Tune
2.9.2 [Liaw et al., 2018].

Each test consists of 100 episodes (each with 4,000 interactions), with agents responsible
for peripheral units. The number of agents varied from 1 to 6, with a previously established objective
criterion evenly distributed as profit, customization, and sustainability. This strategy allows for the
analysis of deadline and priority issues in the redirection of demands, highlighting that, in a real
scenario, these priorities would be dynamic and balance economic and non-economic objectives.

As shown in Figure 4, rewards increase as more agents collaborate. Despite the evolution
of environment rewards differing noticeably, it is not fair to evaluate only total rewards, considering
the reward aggregation effect. Thus, we analyze agent 0, the only one present in all configurations,
to provide a more consistent benchmark. Figure 5 reveals that increasing agent count reduces total
rejected demands, confirming effective cooperation in demand redirection.

Figure 6 shows that more agents improve demand absorption, especially when aligned
with demand features (e.g., profitability or sustainability). In the 6-agent scenario—where each ob-
jective is double-covered—transfers are more likely to succeed. As Figure 7 shows, most accepted
transfers result in timely production.

Occasionally, transferred demands miss deadlines and are stored in the yard (Figure 8).
Posteriorly, an incoming demand matches the unit’s previously inventoried demand (produced, not
delivered, and stored), allowing it to be immediately sent to the client [Ferreira et al., 2023]. Figure 9
details the number of demands assigned to agent 0 (always prioritizing profit in the 3-agent and 6-
agent systems). Figure 10 quantifies such matches, increasing by 135% in the 6-agent case and
235% in the 3-agent case. These gains reflect increased transfers and higher system flexibility.

1https://github.com/alyssoncrvg/OPTSIMFLEX



Figure 4: Total environment reward across
scenarios with 1–6 agents

Figure 5: Total rejected demands vs. number
of agents

Figure 6: Accepted demands vs. number of
agents

Figure 7: Transferred demands successfully
produced

Figure 8: Transferred demands produced but
delayed (stored in the yard)

Figure 9: Transferred demands matched with
yard stock (agent 0)

Figure 10: Total matches in agent 0’s yard

All previous scenarios assume unlimited yard space. Without it, agents face stricter con-



straints and penalties. The following results compare such scenarios. Figure 11 shows that agents
with access to yard space incur 15% fewer penalties on average. Figure 12 highlights waste as the
main penalty source when no yard is available, with the 6-agent setup discarding over two demands
per episode.

Figure 11: Average penalties with and
without yard Figure 12: Average discarded demands

Even single-agent environments discard demands without yard access (Figure 13). Fig-
ure 14 shows a 20% increase in rejections when yard capacity is absent. This indicates that agents
learn to avoid risk early during training.

Figure 13: Maximum discarded demands per
episode

Figure 14: Rejected demands with and
without yard

Despite increased rejections, the system maintains similar levels of accepted demands
(Figure 15), demonstrating effective redirection to suitable agents. Nearly all accepted demands
are ultimately produced and delivered (Figure 16), showing a refined balance between caution and
efficiency without yard storage.

Figure 15: Accepted demands (no yard)
Figure 16: Demand handling breakdown (no

yard)



5. Conclusion
This study presented a framework for integrating reinforcement learning agents in a multi-

agent environment simulating manufacturing units, oriented toward personalized production. The
main objective is to develop a structure capable of representing agents with multiple goals (prof-
itability, sustainability, variability), reflecting the demands of Industry 4.0. The results demonstrate
that the inclusion of multiple agents with distinct objectives increases the system’s ability to handle
a broader range of demands, fostering both collaboration and specialization. The proposed redistri-
bution mechanism helps mitigate order rejections and leverages idle capacity in compatible units,
enhancing the system’s overall efficiency.

Furthermore, the study evaluated scenarios both with and without buffer storage (yard),
highlighting its critical role in absorbing uncertainty and increasing operational flexibility. Even in
the absence of a yard, agents were able to adapt their behavior through learning, minimizing penal-
ties associated with product waste and adjusting their demand acceptance strategies accordingly.
The tools and libraries employed—namely RLlib, PettingZoo, Wandb, and Ray Tune—played a
key role in the training, evaluation, and tuning of the learning models, enabling robust and repro-
ducible simulations.

For future work, the following directions are suggested: a) Introducing variability in de-
mand arrival rates to simulate seasonality and external events; b) Incorporating explicit communica-
tion between agents to enable coordinated decision-making; c) Including organizational and social
well-being metrics as agent objectives; d) Adapting the framework to real cyber-physical systems
to assess its practical viability. The findings indicate that reinforcement learning-based multi-agent
approaches are promising for the design of flexible, collaborative, and resilient manufacturing en-
vironments, aligned with the principles of Industry 4.0 and 5.0.
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